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ABSTRACT 

The dynamics of an offshore system is influenced by various effects which are inherently random and 

nonlinear in nature: These effects can result from different sources such as hydrodynamic forces, coupling 

of different vessels or nonlinear restoring forces of mooring systems. Therefore, results from a linear 

analysis such as frequency response calculations may be comparatively easy to obtain, but their validity is 

usually limited to small amplitude motions.  

The work includes models of floating vessels at different levels of simplification, from a single moored 

barge to systems with multiple components such as crane operations. 

In order to determine or at least approximate probability density functions, numerical techniques such as 

Monte Carlo simulations and statistical linearizations are addressed as well as analytical methods on the 

basis of perturbation approaches. While the analysis techniques have their specific advantages, the results 

agree quite well. They allow for an estimation of the probability of occurrence of extreme events in the 

dynamics. 

1.0 INTRODUCTION 

In an environment characterized by random wave and wind force, accidents resulting from the dynamical 

response of floating vessels are a potential danger. Accessing the probabilities of large amplitude motions 

or collisions mathematically is a difficult task. It not only requires a detailed description of the mechanical 

problem but also results in a high computational effort. The aim of the current research is to develop 

techniques that allow for an assessment of probabilities for extreme events and the associated expected 

times. 

The first step in the investigation is the development of a suitable model. Mathematical descriptions of 

offshore systems show a wide variety – from relatively simple one or two degree-of-freedom models to 

large-scale multibody systems and discretized descriptions of the fluid-structure interaction or flexible 

components, [2].  

The modeling process is usually a trade-off between complex and simple formulations: While the former 

give a more precise description of the mechanical interrelation of different components, the later are 

significantly easier to evaluate for multiple sets of parameter values or initial conditions at practicable 

computational costs.  

A systematic evaluation of the equations of motion requires both, a precise model which is yet simple 

enough to evaluate numerically. It is therefore important to treat the modeling process as an integral part 
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of the investigation: Different techniques for the analysis require specific formulations of the equations of 

motion and a large number of different approaches have been presented in literature, see e.g. [1] or [4] and 

the references therein.  

2.0 MODELING ASPECTS 

In recent years a number of studies about the nonlinear dynamics of marine systems have focused on the 

deterministic aspects of the responses. Excitations resulting from ocean waves are often idealized as 

harmonic functions. The coexistence of multiple steady-state oscillations with different amplitudes in 

certain parameter ranges is a well-known phenomenon for such systems. These different attractors also 

include subharmonic or chaotic responses. Since the observed dynamics in these cases is highly dependent 

on the initial conditions, the question about the robustness of the different solutions arises. Uncertainties 

with respect to the state of the system, its parameters or the external excitation could cause a completely 

different dynamical response and are therefore highly critical. 

2.1 Floating Systems 

When describing the dynamics of a floating system, part of the equations of motion is due to the 

surrounding fluid, part of it results from the internal structure: Mechanical coupling of different rigid 

bodies or the deformation of flexible components leads to nonlinear terms in the equations of motion. The 

example considered here refers to the motion of a moored floating barge. The restoring force of the 

mooring system is due to the weight of a catenary system. A horizontal displacement of the vessel changes 

the catenary curves of the mooring lines. Parts of the heavy chains are lifted from the ground on one side 

of the vessel and are lowered to the ground on the other side. This effect contributes a nonlinear restoring 

force which for one individual chain is commonly described by a hyperbolic cosine function.  

x

a

 

Figure 1 : Model of a floating crane 

Taking into account the effect of several chains it is more efficient to approximate the resulting total 

restoring force by a polynomial form 

3
321 XcXXcXcf m −−−=  ( 1 ) 

Assuming that the fluid-structure interaction can be described by a linear model, the equation of motion 

takes the form 

( ) ( )tftXXqXm e+= ,, &&&  ( 2 ) 

In this case of a one degree-of-freedom model the wave excitation ef only includes the X-component of 

ef . The total mass m  includes the mass of the barge pm  and the added mass a due to the motion of the 
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fluid. External forces including viscous drag 

XXBTcf Dvd
&&ρ

2

1
−=  ( 3 ) 

radiation damping 

Xbf xrd
&−=  ( 4 ) 

and mooring line forces are combined in q . The parameters in these equations are the density of water ρ , 

a drag coefficient Dc , the width B , and draft T  of the vessel, and the added damping coefficient xb . 

As a second example we take a similar barge but also include the motion of a swinging load, which is 

suspended from a crane, see [3]. The equations of motion then take the form 

( ) ( ) ( ) ( )tefYY,qYY,kYYM =−+ &&&&  ( 5 ) 

with the total mass matrix 








 ++
=

ll

lxlp

mlml

mlamm
2cos

cos

α

α
M  ( 6 ) 

the vector of Coriolis and gyroscopic forces 
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and the vector of external forces 
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Herein the mass of the load is denoted by lm , the length of the hoisting rope is l , the swing angle is 

α and g is the acceleration due to gravity. For more details on the modeling of the system please refer to 

[3]. 

In order to get different levels of idealization for the wave forces, we first assume that the forcing takes the 

form of a harmonic function. This is also referred to as the undisturbed case. Then, in the next step an 

underlying harmonic function is perturbed by an additive disturbance. This gives the superposition of a 

harmonic force at the dominant frequency and a small random component given by the output of a filter, 

which in the simplest case would constitute a series of random impulses 

( ) ( ) ( )( ) ξε++Ω+Ω= dire pAtktkAtf
2sincos  ( 9 ) 

whereξ is random white noise and the magnitude of the disturbance is controlled by the factorε . The 

disturbances studied in this paper are random disturbances only. 
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3.0 ANALYSIS 

Several techniques may be used in order to approximate the dynamical response of a randomly excited 

system. By far the most widely used are Monte Carlo techniques. Since these techniques are 

computationally costly, we here propose two different techniques, an analytical approximation and a 

numerical procedure, which may serve to characterize the dynamics.  

3.1 Analytical Technique 

There are very few techniques which allow for an analytical treatment of nonlinear stochastic systems. 

Some of the few approaches which give at least a little insight in a system’s dynamics are perturbation 

techniques. If a problem can be formulated in such a way that it can be considered as a perturbation of 

some other system with a known solution, one can often express the effect of the perturbation in terms of a 

series expansion 

K+++= 2
2

10 xxxx εε  ( 10 ) 

These techniques are widely used for deterministic systems.  

For the randomly perturbed systems treated here, we use the multiple scales technique. As the excitation is 

considered to be composed out of a strong harmonic component and a smaller random term, the resulting 

response is assumed to be a perturbation of a deterministic system.  

For the case of deterministic forcing, the system considered here has been investigated in [3]. The effects 

which have been investigated there included different primary and subharmonic resonances. Here we add 

a small random perturbation to the forcing term and include it in the analysis which otherwise is very 

similar to the deterministic case.  

We start by sorting the terms in the equations of motion in such a way that the linear terms or 

displacement and acceleration remain on the left hand side and all other components form the right hand 

side: 

( ) ( )tw ,,,, Ω++−=+ fyyygyByKyM χ&&&&&& . ( 11 ) 

The different component of the motion are then decoupled by the transformation 

Φξy = . ( 12 ) 

The matrix Φ  is the modal matrix of the linearized equation given in (15). This approach yields the 

normal form of the system 

( )χξξξhξΩξ ,,0
&&&&& ,,tΩ=+ . ( 13 ) 

In contrast to the deterministic case, we include the random components iχ  in the normal form of the 

equations of motion. All these components are assumed to have zero-mean  

[ ] 0=iE χ . ( 14 ) 

These random perturbations are added to the harmonic excitation with the frequency Ω  and scaled 

accordingly. More detailed assumptions concerning the perturbations are added in a later step of the 
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analysis.  

We follow the procedure of the multiple scales analysis and assume that the solution of (12) takes the form 

( ) ( ) ( ) ...,,,,,, 2102
2

21012100 +++= TTTTTTTTT ξξξξ εε . ( 15 ) 

The terms iT  mark the different time scales with 

tTtTtT
2

210 ,, εε === . ( 16 ) 

Then, sorting the different orders of ε  and requiring that (17) is fulfilled for each order of ε  separately, 

the procedure leads to a set of differential equations 

0ξΩξ =+→ 0
2
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0
Dε , ( 17 ) 
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( )[ ] ( )χε ,,,22 1021100
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On the right hand side of these equations only the excitation term  

( ) ( ) { }∑ ∫ −+Ω=Ω
l

l
l

l

dTTtt

ω

π

ωχ
π

ω
χ

2

0

00102102 exp
2

,,,,, ξξhξξh . ( 20 ) 

has a contribution due to the random perturbation. All other terms remain unchanged compared to the 

deterministic analysis and just like in the deterministic case we therefore introduce the detuning ν  which 

describes the difference between the excitation Ω  and the resonance frequency jω  

jωνε −Ω=2
. ( 21 ) 

With this approach, the form of the first and second order approximations of the solution also remain 

unaffected by the random perturbation giving 

( ) ( ){ } { } ..exp,exp,
2

1
021210 ccTiTTiTTa jjjj += ωβξ , ( 22 ) 

and  

( ) ( ){ } ( ) ( ){ }{ }∑ ++++=
kj

kjjkkjkjjkkj ccTiTAATiTAA
,

0
)2(

20
)1(

21 ..expexp ωωωω SSξ , ( 23 ) 

where in both cases ..cc  stands for the complex conjugate terms. It is the elimination of secular terms in 

(23) that first leads to contributions of the random terms: 
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The coefficients jlΛ  and klΛ  are functions of the system’s parameters. With γφ −Ω= t , the terms of the 

random perturbations are  

∫−=
π

φφ
πω

2

0

1 sin
2

1
dχχ

j

j , ( 28 ) 
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2

0
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2

1
dχχ

j

j . ( 29 ) 

The coefficients jkΛ , the hydrodynamic forces jf , the phases jδ , and the damping terms jµ  and jd  

remain the same as in the deterministic case and we therefore refer to [3] for details. 

In order to determine the effect of the random perturbation we here split the amplitudes and phases into a 

deterministic (d) and a random (r) component, 

jrjdj aaa += , ( 30 ) 

jrjdj γγγ += . ( 31 ) 

This approach leaves the deterministic part of the solution unchanged compared to the unperturbed case, 

since all random components are accounted for in the jra  and jrγ  terms. Linearization of the equations 

for the random contributions leads to  

1

2
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Considering the equations for the amplitudes jra  and kra  in (36) and (39) we get a zero-mean 

contribution  

[ ] 0=jraE , ( 36 ) 

[ ] 0=kraE , ( 37 ) 

and the autocovariances  

( ) ( )[ ] ( ) ( ) ( )[ ]{ } ( ) ( )[ ]∫ ∫ −+−−−=
2 1

0
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0

2211221121 ,exp,

t t
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( ) ( )[ ] ( ) ( ) ( )[ ]{ } ( ) ( )[ ]∫ ∫ −+−−−=
2 1

0

21

0

2211221121 ,exp,

t t

kkkdkkkrkr ddEttadtataE τττχτχττµ . ( 39 ) 

Until now, the only assumption made on χ  was that it is zero-mean. Within the limits of the 

approximations made in this proposed procedure, the statistical properties of the responses can be 

determined from (42) and (43). For example, considering whit noise with the intensity 0S , i.e. the 

correlation 

( ) ( )τδπτχ 02 SR
j

=  ( 40 ) 

we get  
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S
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−−
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µω

π
2

0
21 , . ( 42 ) 

This means that we can approximate the effect of small random perturbations from the intensity of the 

random excitation component and the system’s parameters. For the example of white noise the result is 

independent of time and independent of the detuning parameter ν .  

It has to be noted however, that this approach with the multiple scales analysis only considers small 

nonlinearities and small perturbations. Large deviations from the solution of the deterministic system 

might eventually lead to jumps between different solutions. Since this cannot be handled by the approach 

presented above, we turn to numerical techniques in the next section.  

3.2 Numerical Techniques 

There are different mathematical techniques in order to obtain information on probabilities or rather 

probability densities. The most common approaches are based on Monte-Carlo simulations: Long sample 
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realizations are evaluated statistically to give the required information. The advantage of this method lies 

in its flexibility: Even large systems with multiple degrees of freedom can be analyzed with this technique, 

though most investigations result in massive calculations and effects of small probability are hardly 

accessible. 

As an alternative the statistical linearization has been shown to be applicable for large random systems. 

The concept used in this paper is based on normal (Gaussian) distributions, which are completely 

characterized by their mean value µ  and their variance 2σ , or for an −n dimensional system the vector of 

mean values µ  and the covariance matrix C , respectively. The probability density of a Gaussian 

distribution is given by 

( )
( ) ( )

( ) C

µyCµy

n

T

yp

π2

2

1
exp 1









−−−

=

−

 ( 43 ) 

This formula holds for higher order dimensions. 

The advantage of using normal distributions for this method lies in the invariance of its form under a 

linear transformation. For a randomly forced linear system the evolution of the initial condition would 

always keep the shape of the typical bell curve. The main idea of the linearization technique as it is 

applied here is also based on a simulation in time domain, but instead of following a single trajectory, the 

evolution of an initial distribution is determined. 

While the overall dynamics of the system under investigation may include sources of nonlinear behavior, 

it is still sufficiently smooth in order to apply a local linearization. 

As long as the standard deviation is sufficiently small, the behavior can therefore be considered linear 

about the mean value of the distribution. These assumptions result in a time-stepping scheme in which the 

distribution { }C,µ with the mean value µ  and the covariance matrix C  is mapped onto a new distribution 

in the next time step tt ∆+  

{ } { }
ttt ∆+→ CµCµ ,,  ( 44 ) 

Where the rate of change of the mean value µ  and the covariance matrix C  are determined from the 

equations of motion by 
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 ( 45 ) 
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dt

d
E

dt

d
TYYC

 ( 46 ) 

It has to be noted that due to the dissipation, any distribution with a small variance will eventually spread 

out. Thus, the linearization about the mean value will become an increasingly crude approximation. In 

order to maintain the local character of the linearization, the variance is required to remain below a certain 

value. Once this limit is reached, the distribution is split into several parts as indicated in Figure 2 and the 

different parts are treated individually in the subsequent time steps. The total probability density is then 

computed as the sum of the individual distributions. On the other hand, different distributions are 
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combined to one single distribution in order to reduce computational time [5]. 
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Figure 2 : Overlaying and splitting of distributions 

4.0 RESULTS 

Given a deterministic forcing, we first consider the floating crane without a swinging load. In this case we 

obtain four different steady-state solutions for the assumed operating conditions as shown in Figure 3: One 

period-1 type of motion and three different subharmonic responses.  

period-2

period-2

period-3

period-1

x(m)

x
(m

/s
)

 
Figure 3 : Phase diagrams of the attractors of the undisturbed system. 

Figure 3 indicates that the maximum displacements are significantly different for the four separate types of 

motion: while the period-1 and the period-3 motions have relatively moderate maximum displacements 

around m2 , the two period-2 motions go up to about m8 .  

 

Figure 4 : Probability density functions for the disturbed system: small perturbation ( 0005.0=σ ). 

The different types of motion – often referred to as different attractors – have been obtained by a 
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numerical integration of the equation of motion with the same parameters but different initial conditions. 

All four solutions are stable: Small perturbations do not change the character of the solution, if they are 

sufficiently small. Such small perturbations occur naturally during the numerical integration due to 

truncation errors. This means that there are no jumps between the different solutions for the 

deterministically forced system. Only large perturbations, i.e. large changes in the velocity or the position 

of the barge, would cause jumps between the different solutions.  

As long as the forcing is deterministic, the initial condition of the integration of motion determines which 

type of steady-state motion will be reached. Adding a random forcing changes this behavior significantly: 

Even though the system will stay close to one of the four different types of motion, random jumps 

between the areas surrounding these attractors are possible. In order to see this, Monte-Carlo simulations 

have been performed with different levels of random disturbances. 

   
Figure 5 : Probability density functions for the disturbed system: large perturbation ( 01.0=σ ). 

The results are displayed in Figure 4 and Figure 5. It can be seen that the highest values of the probability 

density occur near the periodic attractors shown in Figure 3. For the small perturbation all four types of 

motion remain visible in the probability density function, see Figure 4. Only with higher levels of the 

disturbances the areas with relatively high probabilities get wider and the influence, especially of the 

large-amplitude attractors diminishes, Figure 5. 

For the model of a crane with a swinging load, the method of statistical linearization is used in order to see 

the effect of uncertainties of the initial condition and random disturbances as time proceeds. Figure 6 

shows the initial distribution which is assumed to be centered at the equilibrium position of an unforced 

system. It also shows how the initial distribution is deformed in the first three periods.  

−10

−5

0

5

10
−2

−1

0

1

2
0

0.5

1

xp (m/s)
x (m)

p

     

Figure 6 : Initial distribution for the analysis of the floating crane and probability density after three 
periods of the deterministic part of the forcing 
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The significant reduction in the peak value and the wedge-like shape of the distribution are due to the 

dissipative term, caused by the random disturbance, and the nonlinearity of the system. 

The fact that the period-3 motion is dominant in the deterministically forced system means that in the 

slightly disturbed case, the maximum of the distribution might follow either one of three different paths. 

These three different paths only differ by a phase change corresponding to the period T  of the harmonic 

part of the forcing. If averaged over three periods, the distribution shows maxima near the two loops in the 

trajectory of the deterministic system, Figure 7. 
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Figure 7 : Contour and surface plots of the mean distribution averaged over three periods of the 
harmonic component of the forcing. The dark solid line marks the evolution of the corresponding 

deterministic system. 

Even though the small uncertainties in the initial condition and the random disturbance of the forcing lead 

to a significant variance after only a few time steps, it should be noted that the mean follows the trajectory 

of the corresponding undisturbed system closely: The probability distribution averaged over the first three 

periods is shown in Figure 8. The peak in the middle of the surface due to the narrow initial distribution 

(Figure 6) is still very pronounced. 

The probability densities here give information on the dynamics of a randomly disturbed system. In order 

to compare these results with the nearby undisturbed system the path of the maximum of the probability 

density in each time-step is compared to the motion of an undisturbed system. Figure 9 shows that for the 

crane vessel the maximum of the computed probability distribution still follows the trajectory of the 

corresponding deterministically forced system. 
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Figure 8  : Mean distribution averaged over the first three periods 

  

Figure 9  : Maxima of the probability density (dots) and trajectory of the deterministically forced 
system (solid line)) 

5.0 CONCLUSIONS 

This paper discussed the similarities and differences between systems in regular (harmonic) and randomly 

perturbed waves. The system under consideration exhibits distinctly nonlinear behavior in the case of 

regular forcing. In addition to the simulation of the deterministic system, variations caused by random 

disturbances in the initial conditions as well as in the forcing have been addressed by means of the local 

statistical linearization. 

The mathematical technique described gives insight into the robustness of results obtained from 

simplifying assumptions such as wave forces modeled as harmonic functions. The local statistical 

linearization starts with an initial condition in the form of a probability density function. The following 

time-stepping process is similar to the simulation for a deterministic system but instead of following a 

single trajectory it describes the evolution of the probability density with time. 

The results reveal that the response to the idealized harmonic forcing is still close to the most probable 

response of the comparable system with a disturbed forcing. On the other hand, there is a small probability 

for the system to depart significantly from the deterministically forced system. The probability of the 

system to operate under potentially dangerous operating conditions, with large maximum displacements or 

velocities, can directly be obtained from the integration of the probability density function. 
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